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We have recently discovered that small antimicrobial 3??-amino acid derivatives (Mw<500) also display ac-
tivity against cancer cells. To explore their drug potential, we have presently investigated the mechanisms of
action of two derivatives BAA-1 (ICsq 8.1 pg/ml) and BAA-2 (ICso 3.8 pg/ml) on Ramos human Burkitt's lym-
phoma cells. Studies using annexin-V-FITC/propidium iodide staining and flow cytometry revealed essential
mechanistic differences, which was confirmed by screening for active caspases, investigation of mitochondri-
al membrane potential, and electron microscopy studies. Our results indicated that BAA-1 killed Ramos cells
by destabilizing the cell membrane, whereas BAA-2 caused apoptosis by the mitochondrial-mediated

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Cancer is predicted to displace heart diseases as the leading cause
of death worldwide, and is further globally estimated to double by the
year 2020 and nearly triple by 2030 [1,2]. Natural products, a valuable
source of drug lead compounds, are therefore extensively explored in
the search for new anticancer agents, and a branch of the field of cat-
ionic antimicrobial peptides (AMPs) has already shown promising
therapeutic potential in clinical trials [3-5]. Certain AMPs and AMP
derived peptides are also known to possess anticancer properties.
These anticancer peptides (ACPs) are unique compared to other
cytostatic drugs by selectively interfering with cancer cells via a
charge-triggered membrane disruptive mode of action [6]. There is
additional evidence that ACPs can cause mitochondrial-mediated ac-
tivation of apoptosis, stimulation of the host's immune system, and
prevention of tumor angiogenesis [6]. Thus, by exploring these mech-
anisms of action, ACP based molecules with optimized potencies and
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pharmacokinetic properties may form a novel and promising ap-
proach in cancer therapy [7].

We have recently reported the antimicrobial activity of a series of
small 3%2-amino acid derivatives that were designed to confirm the
pharmacophore model of short cationic AMPs, and that are especially
potent against methicillin resistant Staphylococcus aureus (MRSA)
and with low hemolytic activity [8,9]. The 3?2-amino acid derivatives
show important pharmacokinetic advantages compared to natural occur-
ring AMPs by being much more stable against proteolytic degradation,
and by being able to permeate phospholipid-vesicle barriers by passive
diffusion and thereby resemble drug absorption across the intestinal
epithelia [8,9]. During our studies we have recently discovered that
some of these P?*-amino acid derivatives also display anticancer
activity. High potency of one of the most promising derivatives BAA-2
(see Fig. 1) has been confirmed by screening it against 59 cancer cell
lines at the National Cancer Institute (NCI) revealing ICso values<4 pM
(Strem et al., unpublished results).

We have therefore in the current study continued our investigations
and selected two 3>2-amino acid derivatives, BAA-1 and BAA-2, for elu-
cidation of parts of their anticancer mechanism of action (Fig. 1). BAA-1
was selected based on its elongated and flexible side-chain structure
that was hypothesized to interact strongly with the phospholipid
acyl-chain region of the cancer cell membrane, whereas BAA-2 was se-
lected due to its much more rigid and bulky 2-naphthyl methylene
side-chains that were hypothesized to cause a significant lateral distor-
tion of the cancer cell membrane. However, the results revealed much
larger differences in the mechanism of action of BAA-1 and BAA-2 than
anticipated, and involved cell membrane disruption and mitochondria
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Fig. 1. Structures of the AMP derived 3??-amino acid derivatives BAA-1 and BAA-2.

mediated activation of caspases, which to our knowledge only has been
reported for much larger ACPs [10-13]. The study presents the antican-
cer activity of BAA-1 and BAA-2 against human Burkitt's lymphoma cells
(Ramos cells) utilizing a resazurin based cell viability assay for cell killing
kinetics, and determination of cell death using flow cytometry and an
annexin-V-FITC and propidium iodide (PI) protocol. In addition, screen-
ing for cellular caspase activity and assessment of the mitochondrial
membrane potential were investigated together with scanning electron
microscopy (SEM) and transmission electron microscopy (TEM) for pro-
viding insights into morphological changes of Ramos cells incubated
with BAA-1 and BAA-2. Since drug-likeness as defined by the Lipinski’s
rule of five [14] as well as concerns of cost efficiency were addressed
when designing these 3*?-amino acid derivatives, the present results
add to their potential of forming a novel approach in the field of develop-
ing ACP-chemotherapeutic drugs.

2. Material and methods
2.1. BAA-1 and BAA-2 compounds

The p?2-amino acid derivatives BAA-1 and BAA-2 (Fig. 1) were
synthesized as recently reported by our group [9]. The crude products
were purified by preparative RP-HPLC and analysis with an analytical
RP-HPLC Cig-column and UV detection at 214 nm and 254 nm
showed purity > 95%.

2.2. Cell line

Ramos cells were cultivated in RPMI-1640 growth medium
supplemented with 10% fetal bovine serum (FBS) (Sigma-Aldrich,
St. Louis, MO, USA) and incubated in a 37 °C and 5% CO, humidified
incubator. The cell line is tested regularly for mycoplasma infection
and was identified as Ramos (RA.1) by STR analysis in February 2011.

2.3. Resazurin based viability and kinetic assay

A colorimetric cell viability assay with the resazurin based TOX-8
assay kit (Sigma-Aldrich, St. Louis, MO, USA) was used to evaluate cy-
totoxic effects. Volumes of 100 pl of the test compounds BAA-1 and
BAA-2 in serum free RPMI-1640 medium were added to 96-well
plates to obtain final concentrations ranging from 50 pg/ml to

0.25 pg/ml. RPMI-1640 medium was used as a negative control.
After supplementing with 20 pl of the resazurin solution, Ramos
cells were added immediately to reach a cell density of 2x 10° cells/ml.
The 96-well plates were incubated at 37 °C and the absorbance
measured hourly with a multi-well spectrophotometer (VersaMax,
Molecular devices, Sunnyvale, CA) at 570 nm and a reference wave-
length at 600 nm. The cell survival rate was calculated as the ratio of
the corrected background absorbance values of treated cells and the
non-treated control cells. The half inhibitory concentrations (ICsq) were
determined over a period of 8 h and finished with a final measurement
at 24 h. Additional experiments with doxorubicin were performed to
compare the obtained results with this established chemotherapeutic
agent. Doxorubicin hydrochloride was used in final concentrations
from 5.80 pg/ml to 6 ng/ml corresponding to approximately 5x the
initial doxorubicin plasma concentration after bolus administration and
plasma concentrations 1 h past injection [15]. Due to a slower mecha-
nism of action of doxorubicin compared to BAA-1 and BAA-2, the assay
was extended to 28 h. In order to avoid reduced viability of the Ramos
cells due to culture conditions, the medium was supplemented with
0.5% FBS. The cells were incubated with doxorubicin for 24 h, subse-
quently resazaurin was added and the cells were further incubated for
an additional 4 h before the final read out.

The kinetic properties of BAA-1 and BAA-2 were evaluated using
three different concentrations corresponding to 0.1x, 1x and 10x
the determined ICsy values. Ramos cells were seeded in a 96-well
plate, containing resazurin and the 22-amino acid derivatives in dif-
ferent concentrations, and incubated under the same conditions as
described above. The increase in absorbance of the reduced dye was
recorded by a multi-well spectrophotometer at 570 nm and corrected
for the reference wavelength at 600 nm.

2.4. Annexin V-FITC and propidium iodide assay

The assay was performed according to the manufacturer's protocol
(APOAF, Sigma-Aldrich, St. Louis, MO, USA). Briefly, cell death was in-
duced by incubating 2 x 10 cells/m] with BAA-1 or BAA-2 for 60 min
at concentrations corresponding to 1x ICsg after 8 h. Afterwards the
cells were washed twice with phosphate buffered saline (PBS) and
resuspended in the binding buffer. Fluorescein isothiocyanate (FITC) la-
beled annexin-V and PI was added, incubated for 10 min in the dark at
room temperature and immediately analyzed with a FACSCalibur flow
cytometer (Becton & Dickenson, San Jose, CA, USA) using the FL-1 and
FL-3 channel. The apoptosis inducing substance tributyltin chloride
(TBTC) was used at a concentration of 2 UM as positive control for apo-
ptosis [16].

2.5. Caspase activity screening

To detect activation of caspases-1 to -10, an activity screen was
performed using the Caspase Fluorometric Substrate Set II Plus kit
(Biovision Research Products, Mountain View, CA, USA). Briefly,
Ramos cells (2x 10> cells/ml) were treated with 1x ICso of BAA-1 or
BAA-2 for 1 h, and for each caspase assayed, cells were lysed and
supplemented with reaction buffer as well as DL-dithiothretiol solution.
Subsequently, the 7-amino-4-trifluoro methylcoumarin conjugated
caspase substrates were added, incubated at 37 °C for 2 h and analyzed
on a fluorescence plate reader (SpectraMAX Gemini EM, Molecular de-
vices, Sunnyvale, CA, USA). The increase in caspase activity was deter-
mined by comparing the fluorescence intensity with the levels of the
non-treated control samples.

2.6. Transmission electron microscopy (TEM)
Ramos cells (2x10° cells/ml) were resuspended in serum free

RPMI-1640 medium containing BAA-1 or BAA-2 and seeded in small
culture flasks (NUNC Easy flask 25 cm? Thermo Fischer Scientific,
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Langenselbold, Germany). The concentrations of BAA-1 and BAA-2 as well
as incubation times were chosen according to the previously determined
ICso values. Treated cells and control cells were pre-fixed with
Karnovsky's cacodylate-buffered (pH 7.2) formaldehyde-glutaraldehyde
fixative at 4 °C overnight. The fixative was replaced by Karnovsky's buffer
pH 7.4 and post-fixated with ferrocyanide-reduced osmium tetroxide.
After dehydration in a graded series of ethanol, samples were infiltrated
with a 1:1 mixture of acetonitrile and epon resin (AGAR 100, DDSA,
MNA and DMP-30) overnight. Pure resin was applied the following day
and then polymerized for 24 h. Ultrathin 70 nm sections were prepared
and placed on formvar, carbon-stabilized copper grids. Uranyl acetate
(5%) and Reynold's lead citrate were used for staining and contrasting.
Samples were analyzed on a JEOL-1010 transmission electron microscope
(JEOL, Akaishima, Japan) and images taken with an Olympus Morada
side-mounted TEM CCD camera (Olympus soft imaging solutions
GmbH, Miinster, Germany).

2.7. Scanning electron microscopy (SEM)

The same incubation procedures were performed in the SEM stud-
ies as for the TEM preparations. For post-fixation, 1% osmium tetrox-
ide in distilled water was used and dehydration was accomplished
with a graded series of ethanol. Samples were subjected to chemical
drying with hexamethyldisilazane. Specimens were mounted on alu-
minum stubs with carbon tape, and prior to examination sputter
coated for 90 s. Samples were analyzed on a JEOL JSM-6300 scanning
electron microscope (JEOL, Akaishima, Japan) and image acquisitions
carried out via an EDAX Phoenix EDAM III data acquisition module
(EDAX Inc., Mahwah, NJ, USA).

2.8. Mitochondrial membrane (AV¥,,) potential assessment

Ramos cells (2x 10° cells/ml) were seeded in 12-well plates and incu-
bated for 60 min with BAA-1 and BAA-2 at their determined ICsy values.
Treatment with 2 UM TBTC was used as a positive control and untreated
cells as a negative control. After 40 min tetramethylrhodamine ethyl
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ester perchlorate (TMRE) in DMSO was added to a final concentration
of 100 nM and further incubated until the experiment end point. The
cells were collected and resuspended in Hanks Balanced salt solution
(HBSS) to a final concentration of 1x 10° cells/ml and subsequently ana-
lyzed with a FACSCalibur flow cytometer.

2.9. Data analysis and software

Data sets were tested for statistically differences using the
Wilcoxon Signed Rank test and Student's t-test (Sigma Plot software
version 11; Systat Software Inc, San Jose, CA, USA). The same software
was used to generate graphs. The Flow]Jo software version 7.6.1 (Tree
Star Inc., Ashland, OR, USA) was used to create plots from the flow cy-
tometry analysis. TEM images were acquired with help of the pro-
gram iTEM version 5.0 (Olympus soft imaging solutions GmbH,
Miinster, Germany), and the program Genesis version 4.61 (EDAX
Inc., Mahwah, NJ, USA) was used to acquire SEM images.

3. Results
3.1. Cell viability assay and ICsy determination

The ICsq values of BAA-1 and BAA-2 were determined by assaying
the metabolic activity of Ramos cells using the redox indicator
resazurin. During normal cellular respiration the dye is reduced from
its blue species (resazurin) to an intense pink species (resorufin) and
can therefore be used to assess metabolic activity and cytotoxicity
[17]. A steady decrease of the ICsy values for both BAA-1 and BAA-2
was observed already after 1 h incubation leading to ICso values of
8.1+ 1.1 pg/ml for BAA-1 and 3.8 0.7 pg/ml for BAA-2 after 8 h incu-
bation (Fig. 2a). Continued incubation up to 24 h revealed no change in
the ICsg values. Assaying doxorubicin in three independently performed
experiments revealed an ICsq value of 1.7+ 0.1 pg/ml against Ramos
cells after a total time span of 28 h exposure to doxorubicin.
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Fig. 2. a) Determination of ICsq values for BAA-1 and BAA-2 over a time range of 24 h by measuring the cell viability with the resazurin assay. No changes in ICso values for BAA-1 or
BAA-2 were observed after 8 h incubation and ICso value of BAA-1 was determined to be 8.1 ug/ml and 3.8 ug/ml for BAA-2 (results display the mean4SD of four independent
experiments). b) Analysis of metabolic activity of Ramos cells treated with three different concentrations (0.1x, 1x, and 10x ICs) of BAA-1 and BAA-2 for 24 h measured by ab-
sorbance of resorufin at 570 nm (results display the mean = SD of three independent experiments).
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3.2. Concentration dependent kinetic study

To investigate the impact of different concentrations of BAA-1 and
BAA-2 on the viability and metabolic activity of Ramos cells over time,
three different concentrations, i.e., 0.1x, 1x, and 10x of the deter-
mined ICsq values of BAA-1 and BAA-2 were chosen. A rapid inhibi-
tion of cell proliferation was detected already after 90 min for cells
incubated with 10x the ICsg value of BAA-1 and BAA-2 (Fig. 2b). In
contrast, cells incubated with 1x the ICsq value of BAA-1 and BAA-2
followed the profile of the control cells in the beginning of the exper-
iment, but after 3 h the cellular viability decreased drastically and did
not show any further changes throughout the experiment. Of note, for
cells incubated with 0.1 x the ICsq value was unaffected and followed
the viability curve obtained for the control cells up to the 24 h end-
point of the experiment.

3.3. Detection of apoptosis and necrosis by flow cytometry
A hallmark of an early stage of apoptosis is the externalization of

the phospholipid phosphatidylserine (PS) from the inner to the
outer leaflet of the cell membrane [18]. During this stage the cell

membrane integrity is still intact and the FITC labeled protein
annexin-V is able to bind to PS on the cell surface and can be detected
by flow cytometry. However, the positively charged PI is unable to
enter and stain DNA in viable or early apoptotic cells, whereas
late-stage apoptotic and necrotic cells are susceptible to both
annexin-V-FITC and PI because of increased disintegration of the cell
membrane [19]. Of note, Ramos cells treated with 1x ICso of BAA-1
appeared unaffected, similarly as observed for the control cells and
both the amount of annexin-V-FITC and PI positive cells was equally
low as for the control cells (Fig. 3a and b). However, Ramos cells
treated with 1x ICsg of BAA-2 showed an approximately 6.5-fold in-
creased level of staining by annexin-V-FITC compared to the control
cells, but no drastic increase in the PI signal (Fig. 3b). Cells treated
with TBTC, which was used as positive control for apoptosis, showed
a 9-fold increase in annexin-V-FITC positive cells. As shown in Fig. 3b,
both the BAA-2 and TBTC treated cells differed from control cells re-
garding annexin-V-FITC labeling. In addition, membrane integrity
was analyzed using PI as an indicator of membrane damage after in-
cubation with 1x ICsg of BAA-1 and 1 x ICsq of BAA-2 for 2 h. An al-
most 5-fold increase of PI uptake was observed for BAA-1 treated
cells compared with controls and an almost 2.5-fold higher PI uptake
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Fig. 3. a) Flow cytometry analysis of Ramos cells for detection of apoptosis (Q1), late-stage apoptosis and necrosis (Q2), or unaffected cells (Q4). Control cells and cells treated for
1 h with 1x ICsq concentration of BAA-1, BAA-2 or 2 uM TBTC. b) Quantification by flow cytometry of annexin-V-FITC and PI labeled Ramos cells for detection of apoptosis after 1 h
incubation with BAA-1 and BAA-2 (results display the mean 4 SD of three independent experiments). c) Activation of indicated caspases after 1 h incubation with 1x IC5o of BAA-1
(white bars) and BAA-2 (grey bars). The columns show increase in caspase activity relative to untreated control cells (results display the mean+ SD of three independent

experiments).
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when compared with BAA-2 treated cells (see supplementary data).
Treatment of the cells with BAA-2 for 2 h did not result in any in-
crease in PI uptake.

3.4. Caspase activity screening

Caspases are intracellular proteases that are activated during apo-
ptosis [20]. The screening assessment of caspases-1 to -10 revealed
that incubation of cell suspensions with 1x ICsq of BAA-2 for 1 h led
to an activation of caspases-2 to -10, whereas no caspase activation
was observed for cells incubated with 1x ICsq of BAA-1 (Fig. 3c). A
shorter incubation period of 15 min did not show measurable caspase
activation for BAA-2, and up to 2 h incubation did not lead to an in-
crease in the caspase activation signal or shift in the signal pattern for
BAA-1 or BAA-2 (data not shown). The strongest activation after treat-
ment with BAA-2 was observed for activation of caspases-2, -3/-7, -4, -9
and -10 (Fig. 4). Western blotting for determination of cleaved
caspase-3 was performed and verified the results from the fluorescence
based caspase screening assay (data not shown).

3.5. Morphological analysis by electron microscopy

To further investigate the mechanism of action of BAA-1 and
BAA-2, SEM and TEM studies were used to evaluate morphological
changes in treated cells. Ramos cells were treated with 1x ICsy of
BAA-1 and BAA-2 and subsequently fixed at 60, 120, 180, and
360 min. Untreated Ramos control cells were concurrently incubated
for comparison and fixed at the experimental endpoint at 360 min
(Fig. 4).

SEM images of the control cells (Fig. 4a and c) showed cells with a
rough surface due to microvilli, which also were visible as fine mem-
brane protrusions in the cross sections analyzed with TEM (Fig. 4b
and d). The cell integrity of control cells was maintained during the

Control 360 min 60 min

120 min

experimental period of 360 min, and no sign of cell death was ob-
served. The images of the control cells showed heterogenic nuclei
with both eu- and heterochromatin.

By incubating Ramos cells with BAA-1 for 60 min the cells lost or
retracted their microvilli, and membrane alterations were observed as
craters or pore like structures (Fig. 4e). The TEM images demonstrated
additional massive vacuolization in rounded cells without visible micro-
villi (Fig. 4f). However, no changes in chromatin appearance could be
observed in cells treated with BAA-1. By prolonging the incubation
time these effects became more drastic and cells clearly lost their mem-
brane integrity and collapsed (Fig. 4i-j, m-n, and g-r).

When Ramos cells were incubated with BAA-2, the same morpho-
logical changes were observed with SEM as for BAA-1 (Fig. 4g-k), but
in addition chromatin condensation was visible as a dark condensed
ring along the nuclear envelope, thus indicating apoptotic processes
(Fig. 4h, 1, p and t) [21]. The cell integrity was maintained up to
180 min for Ramos cells treated with BAA-2 (Fig. 40 and p) but
started disintegrating in the subsequent incubation period (Fig. 4s-t).

While organelles of the control cells and the 60 min BAA-1 treated
cells displayed no differences, swollen or disrupted mitochondria
were seen in the 60 min BAA-2 treated cells (Fig. 5u-w). Compared
with healthy cells, mitochondria of the BAA-2 treated cells lost their
inner structure of cristae and/or integrity of the outer mitochondrial
membrane (Fig. 5u, w).

In addition 250 randomly selected control cells and cells treated
for 60 min with BAA-1, as well as BAA-2, were counted and ranked
in four categories, i.e. cells showing vacuolization with condensed
chromatin, solely vacuolization, necrotic morphology and cells with
no visible effects (Table 1).

Nearly 80% of the cells treated with BAA-1 could be categorized as
cells containing vacuoles, whereas chromatin condensation was ob-
served in less than 5% of the BAA-1 treated population. However,
more than 60% of the cells treated with BAA-2 showed condensed

180 min

360 min

Fig. 4. SEM and TEM images of Ramos cells treated with BAA-1 and BAA-2, and compared with control cells incubated for 360 min (panels a-d). Cells treated with 1x ICsq of BAA-1
for 60 min (e-f), 120 min (i-j), 180 min (m-n) and 360 min (q-r). Cells treated with 1x ICso of BAA-2 treated for 60 min (g-h), 120 min (k-1), 180 min (o-p) and 360 min (s-t).

Scale bar SEM 5 pm, and scale bar TEM 10 pm (a-t).
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Fig. 5. Morphology of mitochondria in untreated control cells (u), for 60 min with BAA-1 treated cells (v) and for 60 min BAA-2 treated cells (w). Scale bar 1 pm.

chromatin together with strong vacuolization, while 20% demonstrat-
ed just vacuolization. Among the control cells more than 90% were
unaffected, and less than 10% showed alterations such as apoptotic
or necrotic morphology.

3.6. Mitochondrial membrane potential assessment (AV¥,,)

Loss of mitochondrial membrane potential has been reported to
be connected to mitochondrial outer membrane permeabilization, a
process occurring during activation of the intrinsic pathway of apo-
ptosis [22]. Based on the TEM findings and to further investigate the
mechanism of action of BAA-1 and BAA-2, the integrity of the mito-
chondrial membrane potential (AW,,) was assessed using TMRE
staining and flow cytometry (Fig. 6). As already suggested from anal-
yses of the TEM images, no differences between the control cells and
the BAA-1 treated cells were observed. However, by incubating cells
with BAA-2 less than 25% of the cells showed an intact AW,,. TBTC
was used as positive control due to its ability to induce a complete
collapse of the AW, in all cells resulting in two peaks.

4. Discussion

Insights into the interaction of ACPs with mammalian cells are still
very limited, and it is not just beneficial but also crucial to focus on
detailed studies on mechanisms of action to succeed in developing
novel anticancer agents in the field of AMP research [23]. We have
in the present study investigated the anticancer mechanism of action
of two newly developed p??-amino acid derivatives, BAA-1 and
BAA-2, that were originally designed to confirm the pharmacophore
model of short cationic AMPs against multi-resistant S. aureus (14).

At first the cytotoxic properties of BAA-1 and BAA-2 were deter-
mined against the human Burkitt's lymphoma cell line Ramos using
aresazurin-based toxicity assay. The resazurin assay also made it pos-
sible to determine the ICsq values by simultaneous incubation of
resazurin and the two *2-amino acid derivatives, which showed
that BAA-2 (ICso 3.8 pg/ml) was twice as potent as BAA-1 (ICso
8.1 ug/ml) (Fig. 2a). The results revealed furthermore that the
322-amino acid derivatives BAA-1 and BAA-2 had an immediate im-
pact on Ramos cancer cells, whereas the antitumor drug doxorubicin
required a much longer incubation time due to its intercalating

Table 1

Categorization of randomly selected cells based on cell morphology events observed
using TEM (in %). Untreated control cells and cells treated with BAA-1 or BAA-2 for
60 min were evaluated.

unaff vac nec chr
Control 91.6 24 3.6 24
BAA-1 184 75.6 1.6 44
BAA-2 6.8 21.2 7.6 64.4

Abbreviations: unaffected (unaff); vacuolization (vac); necrosis (nec); condensed
chromatin (chr).
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Fig. 6. Representative histograms of the mitochondrial membrane potential assess-
ment and quantification by flow cytometry. a) TMRE stained control cells as well as
cells treated with BAA-1 displayed intact AW, while unstained control cells, cells treat-
ed with 2 uM TBTC or BAA-2 showed no or lower TMRE intensity, i.e. decreased or ab-
sent AW, upon treatment, as indicated by a peak shift to the left. b) Three
independently performed experiments showed a remarkable difference between
untreated and BAA-2 treated cells, while BAA-1 had no impact on AW, (results display
the mean 4 SD).
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mechanism of action. In fact we were unable to use the same cytotox-
icity assay for doxorubicin as for BAA-1 and BAA-2. Even with the
highest doxorubicin concentration we could not determine an ICsq
value after 8 h incubation and therefore had to modify the assay
setup. As described in the Material and methods section, a 24 h
pretreatment with doxorubicin and subsequent assaying with
resazurin led to an ICso value of 1.7 ug/ml. Both BAA-1 and BAA-2
thereby displayed anticancer potencies comparable with the wide
spectrum antitumor drug doxorubicin [24], and were equally or
even more potent than recently reported for much larger anticancer
AMPs consisting of 18 or 37 amino acids [10-13,24].

In addition, the resazurin assay allowed us to follow the impact of
different concentrations of the 3?2?-amino acid derivatives on Ramos
cells over a 24 h time period, which provided valuable information on
potency and rapidness of the substances (Fig. 2b). The first 3 h of in-
cubation and with concentrations equal to the ICsq value determined
after 8 h already had a severe impact on cell survival. We therefore
believe that this constellation of both time frame and compound con-
centrations were appropriate for further experiments, and subse-
quent studies were therefore set up according to our kinetic assay.
In addition, no differences in the curve profile between BAA-1 and
BAA-2 were observed when used at their half inhibitory concentra-
tions suggesting similar cell killing properties (Fig. 2b). Of note, low
concentrations (0.1x ICsg) of BAA-1 and BAA-2 seemed not to affect
cell survival at all, while the very high concentrations (10x ICsg) of
BAA-1 and BAA-2 caused rapid cell death. Hence, both the lowest
and highest test concentrations were disregarded with respect to fur-
ther experiments.

To determine differences in cell death induced by BAA-1 and
BAA-2, treated cells were stained with annexin-V-FITC/PI and ana-
lyzed by flow cytometry. The results showed that BAA-1 treated
cells hardly differed from the untreated control cells after 1 h incuba-
tion, whereas BAA-2 treated cells displayed a similar staining pattern
as cells incubated with our positive control TBTC, indicating an induc-
tion of apoptosis (Fig. 3a-b). It is worth noting that the membrane in-
tegrity was not extensively affected after 1 h of incubation with
either BAA-1 or BAA-2, even though the cancer cell membrane is
the target of many AMP based anticancer peptides [25]. Both
annexin-V-FITC labeling of PS on the cytosolic side of the cells and
PI signals were comparatively low with respect to the control cells
and indicated no severe membrane damage. Similar observations
were reported by Cerén et al. who incubated HL-60 leukemia cells
with the AMP cecropin A at its ICsq and performed annexin-V-FITC/
PI labeling as well as measuring the release of lactate dehydrogenase
[10]. An increased PI uptake was however observed for BAA-1 treated
cells when the incubation time was prolonged to 2 h (see supplemen-
tary data).

Although we have recently reported membranolytic effects on
S. aureus when incubated with BAA-2, the membrane component cho-
lesterol has been suspected to alter membrane stability, thus making
non-malignant, eukaryotic cells less prone to peptide membrane in-
teraction compared to bacterial cell membranes where cholesterol is
basically absent [9,26]. The reason that cationic ACPs nevertheless pref-
erably interact with cancer cells is most likely due to an overexpression
of negative membrane constituents and an increased amount of micro-
villi resulting in a larger surface area compared to non-malignant cells
[25].

A caspase assay was performed to further elucidate the mecha-
nisms of cell death and to get more insights regarding possible intra-
cellular targets. The analyses were not just focused on the commonly
performed screens for caspases involved in the two major apoptosis
pathways (caspases-3, -8 and -9), but included also downstream
caspases as well as inflammation-associated caspases. Only BAA-2
leads to caspase activation in the treated cells and even doubling of
the incubation time for BAA-1 had no impact on the caspase activa-
tion levels, thus supporting the annexin-V-FITC/PI flow cytometer

results regarding the hypothesis of two different mechanisms of ac-
tion for BAA-1 and BAA-2 (Fig. 3c). Treatment with BAA-2 resulted
in activation of caspases-2, -3/-7, -6, -9, -10, suggesting an induction
of the intrinsic apoptotic pathway [27]. Similar results have been
reported for the much longer AMP bovine lactoferricin (Lfcin B), in
which Eliassen et. al reported activation of caspases-6, -7, and -9 as
well as up-regulation of caspase-3 upon incubation with Lfcin B in
neuroblastoma cells [28]. Mader et al. observed cleavage of pro-
caspases-2, -3 and -9 by treating Jurkat T leukemia cells with Lfcin
B, however no caspase activation was found when apoptosis was in-
duced in Ramos or Raji B-lymphoma cells [29,30]. Also the peptides
epinecidine-1, buforin IIb and a series of mitochondria targeting pep-
tides activate caspases by the intrinsic pathway [31-33]. However,
treatment with BAA-2 also resulted in an elevated level of activated
caspase-4, which is located in the membrane of the endoplasmatic
reticulum (ER) and is reported in context of ER stress [34]. Of note,
Rosati and co-workers reported that ER stress can lead to mitochondrial
cytochrome C release, apoptosome formation and initiation of the
caspase cascade of the intrinsic pathway in B-chronic lymphocytic leu-
kemia (BCLL) cells [35].

To investigate which apoptotic pathway BAA-2 induced and to what
extent caspase-4 was involved, experiments using inhibitors for
caspases-3, -4, -8, and -9 were also addressed in the study. Several at-
tempts were undertaken to titrate inhibitor concentrations, but con-
trary to our expectations of increased cell survival, the pretreatment
with caspase inhibitors decreased overall cell survival or had no effect
at all (data not shown). The inhibitors therefore seemed to make the
Ramos cells more susceptible to BAA-2 treatment and had a negative
impact on cell survival, which is also reported by others [36,37]. The im-
pact of activated caspase-4 could therefore not be revealed. However,
direct interactions with negatively charged lipids in the ER membrane
and subsequent release and activation of the ER bound caspase-4 is pos-
sible [38].

Electron microscopy and assessment of the mitochondrial poten-
tial are important tools to further study the apoptotic pathway, the
impact on mitochondria, and the results of caspase activation upon
AMP cancer cell treatment. Since apoptosis and necrosis are accompa-
nied by distinct changes in morphology, both intracellularly and on
the cell surface, SEM and TEM were applied to verify the bioassay
based results [39]. As an early effect, treating Ramos cells with
BAA-1 or BAA-2 resulted in loss of microvilli and a rounding up of
the Ramos cells (Fig. 4). These characteristic changes have been
reported and reviewed in context of apoptosis by others [40,41].
After 3 h of incubation with BAA-1, the cells lost their integrity and
necrotic cell bodies were observed. In contrast to BAA-1, Ramos
cells treated with BAA-2 maintained their integrity up to 3 h and ne-
crosis was finally observed 6 h past onset of incubation.

By using TEM for analysis of effects on intracellular structures,
we observed the same degree of vacuolization in both BAA-1 and
BAA-2 treated cells. These pronounced intracellular changes com-
pared to the control cells were not associated with a loss of cell
membrane integrity since PI staining in the flow cytometry exper-
iments showed intact cell membranes after 1 h incubation with
BAA-1 and BAA-2. Hence, these findings may indicate both cell
penetrating properties and direct membrane interactions for
BAA-1 and BAA-2.

Increased vacuolization has been reported to occur in cells
degrading toxic cytoplasmic constituents via autophagic processes
[42]. These processes involving vacuolization should, however, rather
be seen in context of running a survival program than a mechanism or
initiation of cell death [42,43]. However, the lack of cell material in-
side the vacuoles and difficulties in finding defined double layers sur-
rounding these vacuoles could indicate a TEM preparation artifact. As
described by Eskelinen, cell membrane invaginations, as we observed
in the SEM images, can lead to vacuole appearance due to the prepa-
ration of ultra-sections prior to examination by TEM [44]. Beside the
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similarities regarding vacuolization, characteristic half-moon shaped
chromatin condensation patterns, increasing over time and typical
for apoptosis, were observed for BAA-2 treated cells [21]. Our TEM
images supported the data acquired by flow cytometry, since
chromatin condensation has been reported to occur concurrently
with phosphatidylserine externalization in B-cells, thus leading to
annexin-V-FITC staining [45]. Similar morphological changes were
reported for the 27 amino acid AMP pep27anal2 where Jurkat cells
were treated with almost 3 x the ICsq value over a time range of 4 h
[46]. Lee et al. also observed 30% increase in apoptosis after cell treat-
ment with pep27anal2, whereas in our case incubation with 1x ICsq
of BAA-2 resulted in 60% apoptotic cells already after 1 h. The per-
centage of BAA-2 treated cells in apoptotic stage was additionally
confirmed by counting 250 randomly chosen cells and categorizing
differences in cell morphology. The results showed that 1 h treat-
ment with BAA-2 resulted in more than 60% apoptotic cells with
condensed chromatin, whereas similar treatment with BAA-1 did
not alter chromatin appearance compared to the control cells
(Table 1).

TEM images with higher magnification were also studied to eval-
uate the involvement of mitochondria in the cell death scenarios
upon treatment with BAA-1 and BAA-2. The micrographs revealed
no ultra-structural differences of the mitochondria in the control
cells or BAA-1 treated cells, while pronounced mitochondrial changes
were observed in cells treated with BAA-2 (Fig. 5, panels u-w). Disin-
tegration processes of the outer mitochondrial membrane as well as
the cristae were visible, and suggested a direct mechanism of BAA-2
on mitochondria.

To verify these TEM findings the mitochondrial membrane poten-
tial was assessed using TMRE. The dye accumulated in mitochondria
of the control cells and BAA-1 treated cells, while cells incubated
with BAA-2 displayed an almost 60% decrease in TMRE staining com-
pared to the control cells, indicating mitochondrial outer membrane
permeabilization (Fig. 6). A complete disappearance of staining was
seen for our positive control TBTC, which is reported to interact
with mitochondria via two mechanisms causing an immediate but
slow loss of AW, and a mechanism involving mitochondrial perme-
ability transition pore formation, with a rapid loss of AW, and release
of cytochrome C [47]. As described above, similar results were
reported for Lfcin B and other types of ACPs causing swelling of the
mitochondria and release of apoptogenic factors [28,29,31,48]. We
therefore suggest the mechanism of BAA-2 to involve a direct
interaction with the mitochondria causing release of apoptosis pro-
moting factors such as cytochrome C and subsequent activation of
caspase-9 and downstream caspases leading to apoptotic cell death
[20,22]. BAA-2 might also have increased ability to penetrate the
cell membrane by passive diffusion and being subsequently attracted
to the mitochondria due to their net negative surface charge. We have
previously reported that BAA-2 derivatives are able to permeate
through a phospholipid vesicle based barrier without destroying the
phospholipid bilayers, hence strengthening this hypothesis [9]. Inter-
estingly, the caspase inhibitors were not able to abolish the BAA-2 in-
duced cell death which could suggest a caspase-independent cell
death mechanism. The observed extensive damage of the mitochon-
dria could lead to fast ATP depletion and liberation of the presum-
ably uncleaved apoptosis-inducing factor (AIF) from the inner
mitochondrial membrane [49]. Lethal PARP-1 activation may follow
the AIF release and could lead to a cell death mechanism called
parthanatos. This type of cell death is from a morphological and bio-
chemical point of view very similar to apoptosis however it does not
involve caspase activation [50]. This caspase independent, but con-
trolled, cell death mechanism would be an interesting aspect
concerning therapy improvement of apoptosis resistant cancers
[51].

Since neither the biochemical assays nor the electron microscopy
studies gave positive results for apoptosis by BAA-1 treatment, we

infer that the mechanism of BAA-1 involves time dependent
membrane-lytic processes leading to necrotic cell death. Based on
our flow cytometry studies and morphological observations we fur-
ther suggest that BAA-1 was to a lower extent able to permeate the
cell membrane, but rather promotes membrane lysis. It is therefore
reasonable to believe that when a certain trigger concentration is
reached, the cancer cell membrane is not able to tolerate more
BAA-1 insertions and collapses. However, one has to take into consid-
eration that both, potency and the mechanism of action, may vary
when using different cell lines as reported for the AMP Lfcin B. Fadnes
et al. have demonstrated that the cell killing properties of Lfcin B dif-
fered when cells of different origin were assessed [52]. Furthermore,
as described above, the Rekdal and Hoskin groups have reported dif-
ferent cancer cell killing mechanisms of LfcinB [28-30]. Since fluores-
cence labeling of the compounds would alter their properties too
drastically due to their small size, time dependent permeability ex-
periments on model membranes could reveal penetration properties
of the two compounds as well as their abilities to destabilize a phos-
pholipid bilayer. We are currently commencing more mechanistic
studies to gain a better understanding of the compounds and their in-
teractions with various membranes.

5. Conclusions

Taken together, we suggest dissimilar modes of action of the two
structurally related R%2-amino acid derivatives, in which BAA-1 in-
duced cell death of Ramos cells by necrosis, whereas BAA-2 induced
apoptotic cell death via a mitochondria mediated activation of
caspases of the intrinsic pathway. Even though the structural differ-
ences of BAA-1 and BAA-2 appear to be rather marginal, they have
however a considerable impact on cell killing properties. Further ex-
ploration of the structure and mechanism of action relationship of
B22-amino acid derivatives might aid in the design of specific small
ACPs in future.
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